
The Performance of Parallel Algorithms by
Amdahl's Law, Gustafson's Trend

1Juby Mathew, 2Dr.R Vijayakumar

1Department of CSE, Amaljyothi College of Engg. Kanjirapally
2School of Computer Science, Mahatma Gandhi University Kottayam,Kerala, India

Abstract-Parallelization is a core strategic-planning
consideration for all software makers, and the amount of
performance benefit available from parallelizing a given
application (or part of an application) is a key aspect of setting
performance goals for the parallelization process. Theoretical
discussions of performance potential are necessarily the
starting point for understanding the critical issues involved,
before moving to practical issues associated with a given
project. Amdahl's Law and its modification by Gustafson's
trend give us the basic means to understand what's possible for
a given application, and tools and best practices give us the
means to decide how to use that information in practice.

Key words: Parallel computing; parallel processing; parallel
speedup; parallel efficiency; Gustafson's Trend

OVERVIEW

Parallel computers consisting of thousands of processors are now
commercially available. These computers provide many orders of
magnitude more raw computing power than traditional
supercomputers at much lower cost. They open up new frontiers in
the application of computers—many previously unsolvable
problems can be solved if the power of these machines is used
effectively Analyzing the performance of a given parallel
algorithm/architecture calls for a comprehensive method that
accounts for scalability: a measure of a parallel system’s capacity
to effectively utilize an increasing number of processors. There has
been extensive work in investigating the performance and
scalability properties of large scale parallel systems and several
laws governing their behavior have been proposed.
This paper provides an overview of Amdahl's Law and Gustafson's
Trend, placing them in the context of current development
considerations

THE PERFORMANCE OF PARALLEL ALGORITHMS EXECUTED ON

MULTIPROCESSOR SYSTEMS

The first criterion taken into consideration when the performances
of the parallel systems are analyzed is the speedup used to express
how many times a parallel program works faster than a sequential
one, where both programs are solving the same
problem. The most important reason of parallelization a sequential
program is to run the program faster.[1]
The speedup formula is

Where Ts is the execution time of the fastest sequential program
that solves the problem

 Tp is the execution time of the parallel program used to finalize
the same problem.
 If a parallel program is executed on a computer having p
processors, the highest value that can be obtained for the speedup
is equal with the number of processors from the system. The
maximum speedup value could be achieved in an ideal
multiprocessor system where there are no communication costs
and the workload of processors is balanced. In such a system,
every processor needs Ts/p time units in order to complete its job
so the speedup value will be as the following:

There is a very simple reason why the speedup value cannot be
higher than p – in such a case, all the system processors could be
emulated by a single sequential one obtaining a serial execution
time lower than Ts. But this is not possible because Ts represents
the execution time of the fastest sequential program used to solve
the problem.

 According to the Amdahl law, it is very difficult, even into an
ideal parallel system, to obtain a speedup value equal with the
number of processors because each program, in terms of running
time, has a fraction α that cannot be parallelized and has to be
executed sequentially by a single processor. The rest of (1 - α) will
be executed in parallel.

The parallel execution time and the speedup will become:

When p ∞ , we have

The maximum speedup that could be obtained running on a
parallel system a program with a fraction α that cannot be
parallelized is 1/ α, no matter of the number of processors from the
system.
 For example, if a program fraction of 20% cannot be
parallelized on a four processors system, the parallel execution
time and the speedup will be equal with:

Juby Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2796-2799

2796

The parallel execution time will be 40% of the serial execution
time and the parallel program will be only 2.5 times faster than the
sequential one because 20% of the program cannot be parallelized
(figure 1). The maximum speedup that we can obtain is 1/0.2 = 5
and this means that the parallel execution time will never be
shorter than 20% of the sequential execution time even in a system
with an infinite number of processors.

Amdahl law concludes it is very important to identify the fraction
of a program than cannot be parallelized and to minimize it.
The parallel efficiency quantifies the number of the valuable
operations performed by the processors during the parallel program
execution. The parallel efficiency could be expressed as the
following:

Where S is the speedup and p represents the number of the
processors or cores from the system.

Fig.1. Parallel execution on an ideal system

Due to the fact the speedup value is lower than the number of
processors; the parallel efficiency will be always located between 0
and 1.
Another important indicator is the execution cost representing the
total processor time used to solve the problem. For a parallel
application, the parallel cost could be calculated according with the
following formula:[2]

For a sequential program, its cost (sequential cost) will be equal
with the total execution time:

For this reason, the parallel efficiency could be also expressed as
the following:

Finally, the supplementary cost of parallel processing indicates the
total processor times spent for secondary operations not directly
connected with the main purpose of the program that is executed.
Such a cost cannot be identified for a sequential program.

The figure 2 presents the way in which a parallel program will be
executed on a real 4 processor system. This time, the program
contains a fraction of 20% that cannot be parallelized, the load of
the processors is not balanced and the communications times are
not neglected anymore.

Fig.2. Parallel execution on a real system

The source of this type of cost is represented by the following
elements:
 Load imbalance – is generated by the unbalanced tasks that

are assigned to different processors. In such a case, some
processors will finish the execution earlier so they need to
wait in an idle state for the other tasks to be completed. Also,
the presence of a program fraction that cannot be parallelized
generates load imbalance because this portion of code should
be executed by a single processor in a sequential manner.

 Supplementary calculations – generated by the need to
compute some value locally even if they are already
calculated by another processor that is, unfortunately, busy at
the time when these data are necessary.-

 Communication and synchronization between processors
– the processors need to communicate each others in order to
obtain the final results. Also, there are some predefined
execution moments when some processors should
synchronize their activity.

In order to obtain a faster program, we can conclude we need to
reduce to the minimum the fraction that cannot be parallelized, to
assure the load balance of the tasks at the processor level and also
to minimize the times dedicated for communication and
synchronization.

Gustafson: Adding Due Consideration for Large-Scale
Resources and Tasks

Amdahl shows that increasing the parallelism of the computing
environment by some number N (e.g., providing N times the
number of processors or cores) can never increase performance by
a factor of N. The two main factors contribute to this limitation are
the presence of the inherently serial portion of the computational
load (the performance of which cannot be improved by
parallelization) and the overhead associated with parallelization.
That overhead consists of such factors as creating and destroying
threads, locking data to prevent multiple threads from
manipulating it simultaneously, and synchronizing the
computations performed among various threads to obtain a
coordinated result.
Amdahl's Law [3], quantifies the theoretical speedup that can be
obtained by parallelizing a computational load among a set number
of processors. Another way of expressing that relationship is given
in Equation 1.

Juby Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2796-2799

2797

Equation 1. Representation of Amdahl's Law

A simplified case of Equation 1 helps to illuminate the relationship
being shown.
Consider the equation with S (the serial, un-parallelizable portion
of the workload) equal to zero, meaning that the workload is fully
parallelizable; in this case, the speedup is equal to N + ON.
Further simplifying that expression by setting ON equal to zero
(removing the parallelization overhead) reduces the equation to
Speedup (N) = N. Therefore, for example, if one neglects both the
serial component of the workload and the parallelization overhead
(the ideal case), the speedup from splitting a workload from one
processor onto two processors produces a speedup of 2x, splitting
it onto eight cores would yield a speedup of 8x, etc.
Further, viewing Equation 1 as the subtraction of ON from a
complex fraction, the complex fraction represents the speedup
without being adjusted for threading overhead.

To illustrate the limitations on possible performance gains from
parallelizing workloads (which was Amdahl's actual intent),
consider the effect on Equation 1 when N tends toward infinity
and ON tends toward zero. That represents the case where infinitely
parallel processing capacity is available, without any overhead
from parallelization, and it therefore demonstrates the theoretical
upper limit to the performance increase available from
parallelization. As N becomes infinitely large, the expression (1 -
S) / N becomes infinitely small, so that the specialized case of
Equation 1 with infinitely parallel resources and zero
parallelization overhead is reduced to the expression shown in
Equation 2.

Equation 2. A specialized case of Amdahl's Law with infinitely
parallel execution resources and zero parallelization overhead

In 1988, John Gustafson, working with E. Barsis, helped to refine
Amdahl's model by adjusting some of its underlying assumptions.
That is, whereas Amdahl's Law indicates that the speedup from
parallelizing any computing problem is inherently limited by the
presence of serial (non-parallelizable) portions, Gustafson's Trend
posits that this is an incomplete relationship. Gustafson argues that,
as processor power increases, the size of the problem set also tends
to increase. To cite one obvious example: as mainstream

computational resources have increased, computer games have
become far more sophisticated, both in terms of user-interface
characteristics and in terms of the underlying physics and other
logic.
Simply, as compute resources increased, the problem size also
increased, and the inherently serial portion became much smaller
as a proportion of the overall problem. Because Amdahl's Law
cannot address this relationship, [5] Gustafson modifies Amdahl's
work according to the precept that the overall problem size
should increase proportionally to the number of processor cores
(N), while the size of the serial portion of the problem should
remain constant as N increases. The result is shown in Equation 3

Equation 3. A computational representation of Gustafson's
Trend

In this equation, note first that S represents the serial proportion of
the unscaled workload; that is, unlike in Amdahl's Law (Equations
1 and 2), S remains steady in the numerator versus denominator as
a quantity of work, rather than as a proportion of the overall work.
That is, while the parallel portion of the workload (1 - S)2 scales
with the number of processor cores in the numerator of the
equation, the serial portion (S) does not. Obviously, Equation 3 can
be easily simplified by adding the components of the denominator
together, and by doing so as well as eliminating (for the moment)
the effect of parallelization overhead, Gustafson's trend[4] reduces
to the relationship shown in Equation 4.

Equation 4. A simpler representation of Gustafson's Trend

Taking the most extreme case first, according to this simplified
version of Gustafson's trend, scaling the number of processor cores
toward infinity should result in a speedup that also scales toward
infinity. Of course, infinite numbers of cores are not directly
relevant to real-world implementations, but this relationship is
instructive as a comparison with Amdahl's Law. To see more
clearly what the effect of increasing the number of cores on a
specific workload might be, consider a computational load that is
10 percent serial, where the serial portion remains a fixed size and
the parallel portion increases in size proportionally to the number
of processor cores, as called for in Gustafson's Trend. Table 1
shows the projected result as the number of processor cores applied
to the theoretical problem is increased.

Table 1. Gustafson's Trend applied to a hypothetical problem
being scaled to various numbers of processors

cores

Computation Speedup Efficiency (speedup
/ # cores)

2 0.1 + 2 (1 -0 .1) 1.9x 95.00%
4 0.1 + 4 (1 -0 .1) 3.7x 92.50%
32 0.1 + 32 (1 -0 .1) 28.9x 90.31%
1024 0.1 + 1024 (1 -0 .1) 921.7x 90.01%

Juby Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2796-2799

2798

Clearly, these calculations show that the performance result
continues to scale upward as more processor cores are applied to
the computational load. It's also worth noting that the per-core
efficiency trends downward as additional cores are added, although
the data in Table 1 shows the decrease in per-core efficiency
between the two-core case and the four-core case to be greater than
the entire decrease between four cores and 1024 cores. On the
other hand, this relationship does not take parallelization overhead
into account, which obviously increases dramatically as the
number of threads (and therefore the complexity of the associated
thread management) increases.

CONCLUSION

Amdahl's and Gustafson's theoretical constructs about the
performance limits of parallelization are an important foundation
to our understanding of how future software will manifest the
power of future hardware. Placed in the context of real-world
considerations about the overheads associated with software multi-
threading, they illuminate the possibilities that multi-core hardware
affords individual applications that have been properly
parallelized.

REFERENCES/ADDITIONAL RESOURCES

The following materials, some of which are referred to in the text
of this paper, provide a point of departure for further research
on this topic:

[1] Grama, A. et al, an Introduction to Parallel Computing: Design
and Analysis of Algorithms,Addison Wesley, 2nd edition,
2003

[2] Jordan, H. F., Jordan, H. E. Fundamentals of Parallel
Computing, Prentice Hall, 2002

 [3] G.M. Amdahl, Validity of the single-processor approach to
achieving large scale computing capabilities. In AFIPS
Conference Proceedings vol. 30 (Atlantic City, N.J., Apr. 18-
20). AFIPS Press, Reston, Va., pp. 483-485.

[4] John Gustafson, Reevaluating Amdahl’s Law, Communications
of the ACM 31(5),reposted at http:// www.scl.ameslab.gov/
Publications/Gus/ AmdahlsLaw/Amdahls.html.

[5]. http://www.springer.com/978-1-4419-9738-8

Juby Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2796-2799

2799

